3.1255 \(\int \frac{(a+b \tan (e+f x))^2}{(c+d \tan (e+f x))^{3/2}} \, dx\)

Optimal. Leaf size=150 \[ -\frac{2 (b c-a d)^2}{d f \left (c^2+d^2\right ) \sqrt{c+d \tan (e+f x)}}-\frac{i (a-i b)^2 \tanh ^{-1}\left (\frac{\sqrt{c+d \tan (e+f x)}}{\sqrt{c-i d}}\right )}{f (c-i d)^{3/2}}+\frac{i (a+i b)^2 \tanh ^{-1}\left (\frac{\sqrt{c+d \tan (e+f x)}}{\sqrt{c+i d}}\right )}{f (c+i d)^{3/2}} \]

[Out]

((-I)*(a - I*b)^2*ArcTanh[Sqrt[c + d*Tan[e + f*x]]/Sqrt[c - I*d]])/((c - I*d)^(3/2)*f) + (I*(a + I*b)^2*ArcTan
h[Sqrt[c + d*Tan[e + f*x]]/Sqrt[c + I*d]])/((c + I*d)^(3/2)*f) - (2*(b*c - a*d)^2)/(d*(c^2 + d^2)*f*Sqrt[c + d
*Tan[e + f*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.328441, antiderivative size = 150, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 5, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.185, Rules used = {3542, 3539, 3537, 63, 208} \[ -\frac{2 (b c-a d)^2}{d f \left (c^2+d^2\right ) \sqrt{c+d \tan (e+f x)}}-\frac{i (a-i b)^2 \tanh ^{-1}\left (\frac{\sqrt{c+d \tan (e+f x)}}{\sqrt{c-i d}}\right )}{f (c-i d)^{3/2}}+\frac{i (a+i b)^2 \tanh ^{-1}\left (\frac{\sqrt{c+d \tan (e+f x)}}{\sqrt{c+i d}}\right )}{f (c+i d)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*Tan[e + f*x])^2/(c + d*Tan[e + f*x])^(3/2),x]

[Out]

((-I)*(a - I*b)^2*ArcTanh[Sqrt[c + d*Tan[e + f*x]]/Sqrt[c - I*d]])/((c - I*d)^(3/2)*f) + (I*(a + I*b)^2*ArcTan
h[Sqrt[c + d*Tan[e + f*x]]/Sqrt[c + I*d]])/((c + I*d)^(3/2)*f) - (2*(b*c - a*d)^2)/(d*(c^2 + d^2)*f*Sqrt[c + d
*Tan[e + f*x]])

Rule 3542

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^2, x_Symbol] :> Simp[
((b*c - a*d)^2*(a + b*Tan[e + f*x])^(m + 1))/(b*f*(m + 1)*(a^2 + b^2)), x] + Dist[1/(a^2 + b^2), Int[(a + b*Ta
n[e + f*x])^(m + 1)*Simp[a*c^2 + 2*b*c*d - a*d^2 - (b*c^2 - 2*a*c*d - b*d^2)*Tan[e + f*x], x], x], x] /; FreeQ
[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] && NeQ[a^2 + b^2, 0]

Rule 3539

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(c
 + I*d)/2, Int[(a + b*Tan[e + f*x])^m*(1 - I*Tan[e + f*x]), x], x] + Dist[(c - I*d)/2, Int[(a + b*Tan[e + f*x]
)^m*(1 + I*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0]
&& NeQ[c^2 + d^2, 0] &&  !IntegerQ[m]

Rule 3537

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(c*
d)/f, Subst[Int[(a + (b*x)/d)^m/(d^2 + c*x), x], x, d*Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m}, x] &&
NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && EqQ[c^2 + d^2, 0]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{(a+b \tan (e+f x))^2}{(c+d \tan (e+f x))^{3/2}} \, dx &=-\frac{2 (b c-a d)^2}{d \left (c^2+d^2\right ) f \sqrt{c+d \tan (e+f x)}}+\frac{\int \frac{a^2 c-b^2 c+2 a b d+\left (2 a b c-a^2 d+b^2 d\right ) \tan (e+f x)}{\sqrt{c+d \tan (e+f x)}} \, dx}{c^2+d^2}\\ &=-\frac{2 (b c-a d)^2}{d \left (c^2+d^2\right ) f \sqrt{c+d \tan (e+f x)}}+\frac{(a-i b)^2 \int \frac{1+i \tan (e+f x)}{\sqrt{c+d \tan (e+f x)}} \, dx}{2 (c-i d)}+\frac{(a+i b)^2 \int \frac{1-i \tan (e+f x)}{\sqrt{c+d \tan (e+f x)}} \, dx}{2 (c+i d)}\\ &=-\frac{2 (b c-a d)^2}{d \left (c^2+d^2\right ) f \sqrt{c+d \tan (e+f x)}}+\frac{(a+i b)^2 \operatorname{Subst}\left (\int \frac{1}{(-1+x) \sqrt{c+i d x}} \, dx,x,-i \tan (e+f x)\right )}{2 (i c-d) f}-\frac{(a-i b)^2 \operatorname{Subst}\left (\int \frac{1}{(-1+x) \sqrt{c-i d x}} \, dx,x,i \tan (e+f x)\right )}{2 (i c+d) f}\\ &=-\frac{2 (b c-a d)^2}{d \left (c^2+d^2\right ) f \sqrt{c+d \tan (e+f x)}}-\frac{(a-i b)^2 \operatorname{Subst}\left (\int \frac{1}{-1-\frac{i c}{d}+\frac{i x^2}{d}} \, dx,x,\sqrt{c+d \tan (e+f x)}\right )}{(c-i d) d f}-\frac{(a+i b)^2 \operatorname{Subst}\left (\int \frac{1}{-1+\frac{i c}{d}-\frac{i x^2}{d}} \, dx,x,\sqrt{c+d \tan (e+f x)}\right )}{(c+i d) d f}\\ &=-\frac{i (a-i b)^2 \tanh ^{-1}\left (\frac{\sqrt{c+d \tan (e+f x)}}{\sqrt{c-i d}}\right )}{(c-i d)^{3/2} f}+\frac{i (a+i b)^2 \tanh ^{-1}\left (\frac{\sqrt{c+d \tan (e+f x)}}{\sqrt{c+i d}}\right )}{(c+i d)^{3/2} f}-\frac{2 (b c-a d)^2}{d \left (c^2+d^2\right ) f \sqrt{c+d \tan (e+f x)}}\\ \end{align*}

Mathematica [C]  time = 0.170763, size = 124, normalized size = 0.83 \[ \frac{-\frac{(a-i b)^2 \, _2F_1\left (-\frac{1}{2},1;\frac{1}{2};\frac{c+d \tan (e+f x)}{c-i d}\right )}{d+i c}+\frac{(a+i b)^2 \, _2F_1\left (-\frac{1}{2},1;\frac{1}{2};\frac{c+d \tan (e+f x)}{c+i d}\right )}{-d+i c}-\frac{2 b^2}{d}}{f \sqrt{c+d \tan (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Tan[e + f*x])^2/(c + d*Tan[e + f*x])^(3/2),x]

[Out]

((-2*b^2)/d - ((a - I*b)^2*Hypergeometric2F1[-1/2, 1, 1/2, (c + d*Tan[e + f*x])/(c - I*d)])/(I*c + d) + ((a +
I*b)^2*Hypergeometric2F1[-1/2, 1, 1/2, (c + d*Tan[e + f*x])/(c + I*d)])/(I*c - d))/(f*Sqrt[c + d*Tan[e + f*x]]
)

________________________________________________________________________________________

Maple [B]  time = 0.08, size = 11618, normalized size = 77.5 \begin{align*} \text{output too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*tan(f*x+e))^2/(c+d*tan(f*x+e))^(3/2),x)

[Out]

result too large to display

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(f*x+e))^2/(c+d*tan(f*x+e))^(3/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(f*x+e))^2/(c+d*tan(f*x+e))^(3/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (a + b \tan{\left (e + f x \right )}\right )^{2}}{\left (c + d \tan{\left (e + f x \right )}\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(f*x+e))**2/(c+d*tan(f*x+e))**(3/2),x)

[Out]

Integral((a + b*tan(e + f*x))**2/(c + d*tan(e + f*x))**(3/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (b \tan \left (f x + e\right ) + a\right )}^{2}}{{\left (d \tan \left (f x + e\right ) + c\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(f*x+e))^2/(c+d*tan(f*x+e))^(3/2),x, algorithm="giac")

[Out]

integrate((b*tan(f*x + e) + a)^2/(d*tan(f*x + e) + c)^(3/2), x)